NLOM is based on the excitation of the non-linear optical response that any material can generate upon excitation with laser pulses of very short duration, in the range of femtoseconds. The NLOM system makes possible, throughout the combined use of the different modalities (Multiphoton Excitation Fluorescence, Second and Third Harmonic Generation), to acquire information, in a totally non-invasive way, on the presence of layers of different chemical nature, their thickness or their crystalline or hierarchical internal organization (i.e. parchment, starch glues, etc.). Lateral and axial resolutions are in the micrometre range and the penetration depth can reach up to 1 mm, depending on the sample transparency. The technique can be applied to substrates that are transparent in the IR region, such as varnishes, painting layers, corrosion layers on metal substrates, parchments and others.
The combined use of the different NLOM modalities derives information, in a totally non-invasive way, on the presence of layers of different chemical nature, their thickness or their crystalline or hierarchical internal organization. It is possible to obtain highly contrasted 3D images at the micrometer scale, without any preparation or sampling, of the artifacts.